Yeşim Arslan
1.441 497


The utilization of hazelnut shells as a renewable and low cost lignocellulosic biomass for bioethanol production requires  the optimization  of hydrolysis step. A comprehensive, experimental and modeling study on the acid hydrolysis of hazelnut shells is reported at variable sulfuric acid concentrations (0.1-0.7 M) and temperatures (100-120 oC) where a solid to liquid ratio is 1/7. The influence of the acid concentration, the temperature and reaction time on reducing sugar as well as the degradation product furan levels were evaluated by performing a 33 full factorial experimental design. The analysis of the optimum combinations of independent variables indicates that a high acid concentration and a moderate temperature may provide the optimum acid hydrolysis conditions for hazelnut shells. 


Hazelnut shells, hemicellulose, acid hydrolysis, factorial experimental design

Full Text:



Arslan, Y., Eken-Saraçoğlu, N., 2010. Effects of pretreatment hydrolysate fermentation with Pichia stipitis to ethanol. Bioresour. Technol. 101, 8664-8670. shell

Aşık, M., Deymer, J., Gülensoy, H., 1977. Utilization of hazelnut shell. Chim. Acta. Turc. 5, 27-42.

Beck, S.R., Wang, T., 1982. Kinetic analysis of hemicellulose in cotton gin Residues. Presented at AIChE National Meeting, Orlando, F.L., February Bian, J., Peng, P., Peng, F., Xiao, X., Xu, F., Sun, R., 2014. Microwave-assisted acid hydrolysis to produce xylooligosaccharides from sugarcane bagasse hemicelluloses. Food Chem. 156, 7-13.

Cahela, D.R., Lee, Y.Y., Chambers, R.P., 1983. Modeling of percolation process in micellulose hydrolysis. Biotechnol. Bioeng. 25, 3-17.

Canettieri, E.V., Moraes Rocha, G.J., Carvalho, J.A., Silva, J.B.A., 2007. Optimization of acid hydrolysis from the hemicellulosic fraction of Eucalyptus grandis residiu using response surface methodology. Bioresour. Technol. 98, 422-428.

Carvalho, W., Canilho, L., Mussatto, S.F., Dragone, G., Morates, M.L.V., Solenzal, A.I.N., 2004. hemicellulosic hydrolysate with ion-exchange resins for xylitol production by calcium alginate- entrapped cells. J. Chem. Technol. Biotechnol. 79, 863-868. sugarcane bagasse

Chandel, A.K., Kapoor, R.K., Singh, A., Kuhad, R.C., 2007. Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. 2007. Bioresour. Technol. 98, 1947-1950.

Chen, L., Zhang, H., Li, J., Lu , M., Guo, X., Han, L., 2015. A novel diffusion-biphasic hydrolysis coupled kinetic model for dilute sulfuric acid pretreatment of corn stover. Bioresour. Technol. 177, 8-16.

Conterella, M., Conterella, L., Gallifuaco, A., Spera, A., Alfani, F., 2004. Comparison of different exploded poplar wood as a substrate for the bioproduction of ethanol in SHF an SSF. Process Biochem. 39,533-1542. methods for steam

Corlett, R.F., 1975. Conversion of seattle’s solid waste to methanol or ammonia. Thetrend in engineering. University of Washington.

D.Demirbaş, A., 2006. Furfural production from fruit shells by acid catalyzed hydrolysis. Energy Sourc. 28, 157-165.

Ertaş, M., Han, Q., Jameel, H., 2014. Acid- catalyzed autohydrolysis of wheat straw to improve sugar recovery. Bioresor. Technol. 169, 1-8.

Garrote, G., Dominguez, H., Parajo, J.C., 2001. Kinetic modeling of corncob autohydrolysis . Process Biochem. 36, 571-578.

Giordano, P., Becceria, A., Goicoechea, H., Ol,iere, A., 2013. Optimization of the hydrolysis of lignocellulosic residues by using radial basis functions optimization. Biochem. Engineer. Jour. 80, 1-9. particle swarm

Gray K.A., Zhao, L., Emptage, M., 2006. Bioethanol. Curr. Biol. 10, 141-146.

Kim, S.B., Lee, Y.Y., 1987. Kinetics in acid- catalyzed hydrolysis of hardwood hemicellulose, Biotechnology and Bioengineering Symposium 17, 71-84.

Larsson, S., Reimann, A., Nilverbrant, N., Jönsson, L.J., 1999. Comparison of different methods for the detoxification of lignocellulosic hydrolysales of spruce. Appl. Biochem. Biotechnol. 77-79, 91

Lavarack, B.P., Griffin, G.J. and Rodman, D., 2000. Measured kinetics of the acid catalysed hydrolysis of sugar cane bagasse to produce xylose. Catalysis Today 63, 257-265.

Lenihan P., Orozco A., O' Neill, Ahmad M.N. M., Rooney D.W., Walker G.M. , 2010. Dilute acid hydrolysis of lignocellulosic biomass. Chem. Eng. J. 156, 395-403.

Luo, C., Brink, D.L., Blanch, H.W., 2002. Identification of potential fermentation inhibitors in conversion of hybrid poplar hydrolyzate to ethanol. Biomass and Bioenerg. 22, 125-138.

Maloney, M.T., Chapman, T.W., Baker, A.J., 1985. Dilute acid hydrolysis of paper birch. Kinetics studies of xylan and acetyl-group hydrolysis. Biotechnol. Bioeng. 27, 355-361.

Martinez, A. Rodriguez, M.E, York, S.W., Preston, J.F., Ingram, L.O., 2000. Use of UV absorbance to monitor furans in dilute acid hydrolysates of biomass. Biotechnol. Prog. 16, 637-641.

Mehlberg, R.L., Tsao, G.T., 1979. Low liquid hemicellulose hydrolysis of hydrochloric acid. 178th ACS National Meeting, Washington D.C.

Miller,G.L., 1959. Use of dinitrosaliciyle acid reagent for reducing sugar. Anal. Chem. 31, 426- [25] Nair, R.B., Lundin, M., Brandberg, T., Lennartsson, P.R., Taherzadeh, M.J. 2015. Dilute phosphoric acid pretreatment of wheat bran for enzymatic hydrolysis and subsequent ethanol production by edible fungi Neurospora intermedia. Ind. Crop.and Pro. 69, 314-323.

Orozco, A.M., Al-Muhtesab, A.H., Rooney, D., Walker, G.M., Ahmad, M.N.M. 2013. Hydrolysis characteristics and kinetics of waste hay biomass as a potential energy crop for fermentable sugars production using autoclave parr reactor system. Ind. Crops and Pro. 44, 1-10.

Paterakis P.G., Korakianiti E.S., Dallas P.P., Rekkas D.M., 2002. Evaluation and simultaneous optimization of some pellets characteristics using a 33 factorial design and desirability function. Int. J. Pharm. 248, 51-60.

Rahman S.H.A., Choudhury J.P., Ahmad A.L., Kamaruddin A.H., 2007. Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose. Bioresour. Technol. 98, 554-559.

Rodriguez-Chang, A., Romirez, J.A., Garrote, G., Vazguez, M., 2004. Hydrolysis of sugar cane bagasse using nitric acid : a kinetic assessment. J.Food Eng. 61, 143-152.

Romero, I., Ruiz, E., Castro, E., Moya, M. 2010., Acid hydrolysis of olive tree biomass. Chem. Eng. Research and Design. 88,633-640. Tappi, 1978. Pentosans in wood and pulp.Tappi standart.

Saha B.C., 2003. Hemicellulose bioconversion. J.Ind. Microbiol. Biotechnol. 30, 279- 291.

Saleh, M., Cuevas, M.,Garcia, J.F., Sanchnez, S., 2014. Valorization of olive stones for xylitol and ethanol production from dilute acid pretreatment via enzymatic hydrolysis and fermentation by Pachysolen tannophilus. Biochem. Eng. Jour. 90, 286-293.

Saraçoğlu, N.E., Mutlu, S.F., Dilmaç, G. and Çavuşoğlu, H., 1998. A comparative kinetic study of acidic hemicellulose hydrolysis in corn cob and sunflower seed hul. Bioresour. Technol., 65, 29-33.

Stoffel, R.B., Felissia , F.E., Curvelo, A.A.S., Gassa, L. M., Area, M.C., 2014. Optimization of sequential alkaline-acid fractionation of sawdust for a biorefinery. Ind. Crops and Pro. 61, 160-168.

Vallejos, M.E., Felissia, F.E., Kruyeniski, J., Area, M.C. Ind. Crops and Pro. 67, 1-6. Wyman, C.E., 1994. Ethanol from lignocellulosic biomass: technology, Bioresour. Technol., 50, 3-15. and Opportunities.

Zhuang, X., Yuan, Z., Ma, L., Wu, C., Xu,M., Xu, J., Zhu, S., Qi, W., 2009. Kinetic study of hydrolysis of xylan and agricultural wastes with hot liguid water. Biotechnol. Adv. 27, 578-582.