### AN OPTICAL METHOD FOR THE QUALITY EXPLORATION OF A GaAs MATERIAL

#### Abstract

The explorations on the surface qualities of these materials become very important for the preparation of solar cells in *PVs*. Therefore a nondestructive optical testing method is proposed in this paper by using *GaAs* *PV* materials. The proposed method uses a gas ionization system (*IS*) together with an optical measurement tool powered by the fractal dimension analysis (*OMT-FD*). The method initially records the spatial distributed light emission intensity (*SDLEI*) data radiated from the *IS *including the *PV* material and applies* OMT-FD* to this data in order to find out the optical properties of the sample. Thus the efficiencies of the discharge light emission (*DLE*) intensities can be accurately and qualitatively investigated and the optical responses of charge carriers are determined for any external voltage range. It has been proven that *OMT-FD* results indicate a sharp increment above a certain external voltage to *IS* and gives a quality value for the *PV* cells under the appropriate external voltage value applied to the *IS*. The optimized parameter set for the testing system has been ascertained.

#### Keywords

#### Full Text:

PDF#### References

Jothilakshmi R, Ramakrishnan V, Kumar J, Saruac A, Kuballc M 2011 Micro-Raman analysis of GaAs Schottky barrier solar cell J. Raman Spectrosc. 42 422–428.

Subramanian B, Sanjeeviraja C 2002 Review of the photoelectrochemical Electrochem. 18 349-366. useful for Bull. cells

Dallas W, Polupan O, Ostapenko S 2007 Resonance ultrasonic vibrations for crack detection in photovoltaic silicon wafers Meas. Sci. & Technol. 18 852–858

Harada Y, Imura K, Okamoto H, Nishijima Y, Ueno K, Misawa H 2011 Plasmon-induced localphotocurrent changes in GaAs photovoltaic cells modified with gold nanospheres: A near-field imaging study J. Appl Phys .110 104306 -104306- 7.

Kundu S, Kumar A, Banerjee S, Banerji P 2012 Electrical properties and barrier modification of GaAs MIS Schottky device based on MEH-PPV organic interfacial layer Mat Sci Semicon Proc. 15 386– 392.

Courel M, Rimada J C, Hernandez L 2012 An high approach GaAs/GaInNAs multiple quantum well and efficiencies using thin concentrators Acta Phys. Slovaca. 51 45-52. film structures for

Hacke P, Uesugi M, Matsuda S 1994 A study of the relationship between junction depth and GaAs solar cell performance under a 1 MeV electron fluence Solar Energy Materials and Solar Cells.35 113-119.

Zeng J J, Tsai C L, Lin YJ 2012 Hybrid photovoltaic devices based on the reduced graphene oxide-based polymer composite and n- type GaAs Synthetic Metals. 162 1411– 1415.

Guo H, Wen L, Li X, Zhao Z, Wang Y 2011 Analysis of optical absorption in GaAs nanowire arrays Nanoscale Res Lett.6 617-623.

Czaban J A, Thompson D A, LaPierre R R 2008 GaAs core-shell nanowires for photovoltaic applications. Nano Lett. 9 148-157.

Colombo C, Hei M, Grätzel M, Fontcuberta A M 2009 Gallium arsenide p-in radial structure for photovoltaic applications. Appl Phys Lett. 94 73108-73113.

Garnett E, Yang P D 2010 Light trapping in silicon nanowire solar cells. Nano Lett.10 1082-1087.

Zhu J, Yu Z, Burkhard G F, Hsu C M, Connor S T, Xu Y, Wang Q, McGehee M, Fan S , Cui Y 2009 amorphous silicon nanowire and nanocone arrays. Nano Lett. 9 279-282. enhancement in

Hu L, Chen G 2007 Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications Nano Lett. 7 3249 -3252.

Li J S, Yu H Y, Wong S M, Li X C, Zhang G, Lo G Q, Kwong D L 2009 Design guidelines of periodic Si nanowire arrays for solar cell application Appl Phys Lett.95 243113-24116.

Kurt H Y, Sadiq Y, Salamov B G 2008 Nonlinear electrical characteristics of semi-insulating GaAs Phys. Status. Solidi.A. 205 321-329.

Salamov B G, Kurt H Y 2005 Current instability in a planar gas discharge system with a large diameter semiconductor cathode J. Phys. D: Appl. Phys. 38 682-687.

Sadiq Y, Kurt H Y, Albarzanji A O, Alekperov S D, Salamov B G 2009 Transport properties in semiconductor-gas discharge electronic devices Solid-State Electron 53 1009-1015.

Kurt H, Cetin S, Salamov B G 2011 Townsend Instabilities in a Modified Discharge System With Coupled Narrow Gaps IEEE.Transaction on Plasma Science 39 1086-1091.

Kurt E, Kurt H, Bayhan U 2009 Ionization effects and linear stability in a coaxial plasma device Cent Eur J Phys.7 123-129.

Kurt H Y, Salamov B G 2007 Nonlinear transport of semi-insulating GaAs in a semiconductor gas discharge structure Physica Scripta. 76 641-648.

Kurt H Y, Kurt E, Salamov B G 2004 Fractal processing for an analysis of the quality and resistivity of large semiconductor plates Cryst. Res. Technol.39 743-753.

Salamov B G, Kurt H Y, Kurt E 2003 An analysis of the spatial homogeneity of a photodetector surface in an infrared image converter using the fractal dimension Imaging Sci J. 51 187-197.

Kurt H Y, Kurt E, Salamov B G 2006 Identification of the dynamics of plasma –induced damage in a CuInSe2 thin film by fractal processing Cryst. Res. Technol. 41 698-707.

Akos N, Miklos M, Laszlo D, Gyozo B 2002 Morphological electrochemically etched GaAs (001) surface Materials Science and Engineering B 90 67. the

Chen Z, Li Q, Pan D, Zhang H, Jiao Z, Wu M, Shek C H, Wu C M L, Lai J K L 2011 Polycondensation-type Ge nanofractal assembly Materialstoday. 14 106-113.

Stoliar P, Calo A, Valle F, Biscarini F 2010 Fabrication of Fractal Surfaces by Electron Beam Lithography, IEEE.Transaction on Nanotech.9 229 - 236.

Lam K T, Ji L W 2007 Fractal analysis of InGaN self-assemble quantum dots grown by MOCVD Microelectron J. 38 905–909.

Mandelbrot B B 1982 The Fractal Geometry of Nature (Freeman Press, San Francisco, CA)

Gangepain J J and Roques C 1986 Fractal approach to two-dimensional and three dimensional surface roughness Wear.109 119-126.