A New Single-Source Cascaded Semi-Bridge Inverter Topology Suitable for Distributed Generation Systems

Mohamad Reza BANAEI, Ebrahim SALARY
2.995 892

Abstract


This paper proposes a single-source cascaded semi-bridge topology so called SSCSB employing one DC input power source and low-frequency single-phase transformers. SSCSB has a two-stage design that includes an input stage and an output stage. The input stage consists of H-bridge voltage
source converter. In the output stage, there is a converter, which converts the AC voltage from the input stage to AC sinusoidal voltage. This stage consists of series connected semi-bridge inverters units that use single-phase transformers for isolation and voltage transformation. The proposed circuit configuration can reduce a number of switches and DC source compared with traditional cascaded H-bridge multilevel inverters using separate DC source. Furthermore, it is suitable for applications in the area of distributed generation  systems, e. g., solar-cell or fuel-cell in combination with battery energy storage. In this paper, two algorithms for determination of turn’s ratio of transformers and switching have been presented, too. To verify the performance of the proposed approach, computer-aided simulations have been provided using MATLAB/ SIMULINK.

Keywords


Cascaded semi-bridge, Low frequency transformer, Single DC Source, Distributed Generation

Full Text:

PDF

References


Lai, J. S. and Peng, F. Z., “Multi-level converters—A new breed of power converters”, IEEE Trans. Ind. Appl., 32 (1997) 509–517.

Rodriguez, J., Lai, J.S. and Peng, F.Z., “Multilevel Inverter: A Survey of Topologies, Controls, and applications”, Electronics, 49(4):724-738, (August 2002). on Industrial

Hajizadeh, A. and Golkar, M. A. ., “Intelligent Power Management Strategy of hybrid Distributed Generation System”, International Journal of Electrical Power and Energy Systems, 29: 783– 795, (2007).

McDermott, T. E. and Dugan, R. C., “Distributed generation impact on reliability and power quality indices”, Conf. Rec. IEEE Rural Electric Power - D3-D3_7, (2002).

Bojoi, R., Cerchio, M., Gianolio, G., Profumo, F. and Tenconi, A., “Fuel Cells for Electric Power Generation: Peculiarities and Dedicated Solutions for Power Electronic Conditioning Systems”, EPE Journal, 1(16): 44-45, (2006).

Blaabjerg, F.,Chen, Z. andKjaer, S. B.,“Power electronics as efficient interface in dispersed power generation systems”, IEEE Trans. on Power Elect., 5(19): 1184-1194, (2004).

Daher, S., Schmid, J. and Antunes, F. L. M., “Multilevel inverter topologies for stand-alone PV systems”, IEEE Trans. Industrial Electronics, 55(7): 2703-2712, (July 2008).

Marchesoni, M. and Tenca, P.,“Diode-clamped multilevel converters: A practicable way to balance DC-link voltages”, IEEE Tran. Ind. Electron. 49(4): 752–765, (August 2002).

Chen, A. andHe, X.,“Research on hybrid-clamped multilevel-inverter topologies”, IEEE Trans. Ind. Electron., 53(6): 1898–1907, (December 2006).

Bendre, A.,Venkataramanan, G., Rosene, D. andSrinivasan, V., “Modeling and design of a neutral-point voltage regulator for a three-level diode-clamped inverter using multiple-carrier modulation”, IEEE Trans. Ind. Electron., 53(3): 718–726, (Jun 2006).

Wilkinson, R. H., Mouton, H. D. T. and Meynard,T. A., “Natural balance of multicell converters”, IEEE-PESC,: 1307-1312, (2003).

Corzine, K., “Operation and Design of Multilevel Inverters”, Developed for the Office of Naval Research, December. 2003.

Peng, F. Z., McKeever, J. W. and Adams, D. J., “Cascade applications”, IEEE-IECON, 437–442, (1997). for utility

Rech, C. and Pinheiro, J. R., “Hybrid Multilevel Converters: Considerations”, IEEE Trans.Ind. Electron. 54: 1092-1104, (2007). and Design

Babaei, E. and Hosseini, S. H., “New cascaded multilevel inverter topology with minimum number of switches”, Energy Conversion and Management, 50: 2761-2767, (2009).

Banaei M. R. and Salary, E., “New multilevel inverter with reduction of switches and gate driver”,Energy Conversion and Management, 52(11): 1129-1136, (2011).

Babaei, E. and Hosseini, S. H., Gharehpetian, G.B.,Tarafdar Haque, M. and Sabahi, M., “Reduction of dc voltage sources and switches in asymmetrical multilevel converters using a novel topology”, Research,:1073-1085, (2007). Power Systems

Babaei, E., “Optimal Topologies for Cascaded Sub-Multilevel Converters”, Journal of Power Electronics, 10(3): 251-261, (May 2010).

Barcenas, E., Ramirez, S., Cardenas, V. and Echavarria, R., “Cascaded multilevel inverter with only one dc source”, VIII IEEE Inter. Tech. Proc. CIEP,: 171-176, (2002).

Park, S. J.,Kang,F. S.,Cho, S. E. Moon, C. J. andNam, H. K.,“A novel switching strategy for improving modularity and manufacturability of 22 cascaded-transformer-based multilevel inverters”, Electric Power Syst. Res., 74: 409–416, (2005).

Leon, J. I.,Vazquez, S.,Kouro, S., Franquelo, L. M. modulation “Unidimensional cascadedmultilevel Transactions on Industrial Electronics, 56(8): 2981–2986, (August 2009). Rodriguez, technique for IEEE converters”,

Rodriguez, J.,Kouro, S.,Rebolledo, J. and Pontt, J.,“A reduced switching frequency modulation algorithm for high power multilevel inverters”, Power Electronics Specialists Conference, PESC. IEEE 36th, :867–872, (June 2005).

Hava, A. M.,Kerkman, R. J. andLipo, T. A.,“Carrier-based PWM-VSI Over modulation Strategies: Analysis, Comparison, and Design”, IEEE Transactions on Power Electronics, 13(4): 674-689, (July 1998).

McGrath, B. P. and Holmes, D.G.,“Multicarrier PWM Strategies for Multilevel Inverters”, IEEE Trans. Ind. Electron, 49(4): 858-867, (August 2002).

Liu, H., Tolbert, L. M., Khomfoi, S., Ozpineci, B. andDu, Z.,“Hybrid cascaded multilevel inverter with PWM control method”, IEEE Power Electronics Specialists Conference 2008,: 162- 166, (June 2008).

Zhoua, G.,Wub, B. andXuc, D.,“Direct power control of a multilevel inverter based active power filter”, Electric Power System Research, 77: 284– 294, (2007).